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1. Scope

1.1 This guide covers a systematic approach to the devel-
opment, testing, evaluation, and documentation of ground-
water modeling codes. The procedures presented constitute the
quality assurance framework for a ground-water modeling
code. They include code review, testing, and evaluation using
quantitative and qualitative measures. This guide applies to
both the initial development and the subsequent maintenance
and updating of ground-water modeling codes.

1.2 When the development of a ground-water modeling
code is initiated, procedures are formulated to ensure that the
final product conforms with the design objectives and specifi-
cations and that it correctly performs the incorporated func-
tions. These procedures cover the formulation and evaluation
of the code’s theoretical foundation and code design criteria,
the application of coding standards and practices, and the
establishment of the code’s credentials through review and
systematic testing of its functional design and through evalu-
ation of its performance characteristics.

1.3 The code’s functionality needs to be defined in sufficient
detail for potential users to assess the code’s utility as well as
to enable the code developers to design a meaningful code
testing strategy. Comprehensive testing of a code’s function-
ality and performance is accomplished through a variety of test
methods. Determining the importance of the tested functions
and the ratio of tested versus non-tested functions provides an
indication of the completeness of the testing.

1.4 Ground-water modeling codes are subject to the soft-
ware life cycle concept that consists of a design phase, a
development phase, and an operational phase. During the
operational phase the software is maintained, evaluated regu-
larly, and changed as additional requirements are identified.
Therefore, quality assurance procedures should not only be
established for software design, programming, testing, and use,
but also for code maintenance and updating.

1.5 Quality assurance in the development of ground-water
modeling codes cannot guarantee acceptable quality of the
code or a ground-water modeling study in which the code has
been used. However, adequate quality assurance can provide
safeguards against the use in a modeling study of faulty codes

or incorrect theoretical considerations and assumptions. Fur-
thermore, there is no way to guarantee that modeling-based
advice is entirely correct, nor that the ground-water model used
in the preparation of the advice (or any scientific model or
theory, for that matter) can ever be proven to be entirely
correct. Rather, a model can only be invalidated by disagree-
ment of its predictions with independently derived observa-
tions of the studied system because of incorrect application of
the selected code, the selection of an inappropriate code, the
use of an inadequately tested code, or invalidity of or errors in
the underlying theoretical framework.

1.6 This guide is one of a series of guides on ground-water
modeling codes and their applications, such as Guides D 5447,
D 5490, D 5611, D 5609, D 5610, and D 5718. Other standards
have been prepared on environmental modeling, such as
Practice E 978.

1.7 Complete adherence to this guide may not always be
feasible. If this guide is not integrally followed, the elements of
noncompliance should be clearly identified and the reasons for
the partial compliance should be given. For example, partial
compliance might result from inadequacy of existing field
techniques for measuring relevant model parameters, specifi-
cally in complex systems.

1.8 This guide offers an organized collection of information
or a series of options and does not recommend a specific
course of action. This document cannot replace education or
experience and should be used in conjunction with professional
judgment. Not all aspects of this guide may be applicable in all
circumstances. This ASTM standard is not intended to repre-
sent or replace the standard of care by which the adequacy of
a given professional service must be judged, nor should this
document be applied without consideration of a project’s many
unique aspects. The word “Standard” in the title of this
document means only that the document has been approved
through the ASTM consensus process.

2. Referenced Documents

2.1 ASTM Standards:
D 653 Terminology Relating to Soil, Rock, and Contained

Fluids2

D 5447 Guide for Application of a Ground-Water Flow
Model to a Site-Specific Problem2

1 This guide is under the jurisdiction of ASTM Committee D18 on Soil and Rock
and is the direct responsibility of Subcommittee D18.21 on Ground Water and
Vadose Zone Investigations.
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D 5490 Guide for Comparing Ground-Water Flow Model
Simulations to Site-Specific Information2

D 5609 Guide for Defining Boundary Conditions in
Ground-Water Flow Modeling2

D 5610 Guide for Defining Initial Conditions in Ground-
Water Flow Modeling2

D 5611 Guide for Conducting a Sensitivity Analysis for a
Ground-Water Flow Model Application2

D 5718 Guide for Documenting a Ground-Water Flow
Model Application2

E 978 Practice for Evaluating Mathematical Models for the
Environmental Fate of Chemicals3

3. Terminology

3.1 Definitions:
3.1.1 code verification, n— in ground-water modeling, the

process of demonstrating the consistency, completeness, cor-
rectness, and accuracy of a ground-water modeling code with
respect to its design criteria by evaluating the functionality and
operational characteristics of the code and testing embedded
algorithms and internal data transfers through execution of
problems for which independent benchmarks are available
(1).4

3.1.1.1 Discussion—In software engineering, verification is
the process of demonstrating consistency, completeness, and
correctness of the software(2). Practice E 978 defines verifi-
cation as “... the examination of the numerical technique in the
computer code to ascertain that it truly represents the concep-
tual model and that there are no inherent problems with
obtaining a solution.” In this guide, the term code verification
is used. The objective of the code verification process is
threefold: (1) to check the correctness of the program logic and
the computational accuracy of the algorithms used to solve the
governing equations; (2) to ensure that the computer code is
fully operational (no programming errors); and (3) to evaluate
the performance of the code with respect to all of its designed
and inherent functions(1).

A code can be considered “verified” when all its functions and
operational characteristics have been tested and have met specific
performance criteria, established at the beginning of the verification
procedure. Considering a code verified does not imply that a ground-
water model application constructed with the code is verified.
NOTE 1—In ground-water modeling, the term “validation” is some-

times used to describe the process of determining how well a ground-
water modeling code’s theoretical foundation and computer implementa-
tion describe actual system behavior in terms of the degree of correlation
between calculated and independently observed cause-and-effect re-
sponses of the reference ground-water system for which the code has been
developed(1,3). This process is also referred to as field demonstration,
field comparison, or extended verification(4).

NOTE 2—Validation as described in Note 1 is by nature a subjective and
open-ended process. As there is no practical way to determine that a
ground-water modeling code correctly represents the reference system, the
code can never be considered “validated.” Therefore, this guide does not
endorse the use of the term validation in the context of ground-water
modeling(1,3,4).

3.1.2 computer code (computer program), n— the assembly
of numerical techniques, bookkeeping, and control language
that represents a model from acceptance of input data and
instructions to delivery of output.

3.1.3 functionality, n— of a ground-water modeling code,
the set of functions and features the code offers the user in
terms of model framework geometry, simulated processes,
boundary conditions, and analytical and operational capabili-
ties.

3.1.4 ground-water model application, n— a nonunique,
simplified mathematical description of one or more subsurface
components of a local or regional hydrologic system, coded in
a computer programing language, together with a quantifica-
tion of the simulated system in the form of framework
geometry, boundary conditions, system and process param-
eters, and system stresses.

3.1.4.1 Discussion—As defined in 3.1.4, a ground-water
model application is a representation of an actual hydrologic
system; it should not be confused with the generic computer
code used in formulating the ground-water model. This guide
concerns only the development, testing, and documentation of
generic simulation computer codes, not ground-water model
applications.

3.1.5 ground-water modeling, n—the process of developing
ground-water models.

3.1.6 ground-water modeling code, n—the nonparametrized
computer code used in ground-water modeling to represent a
nonunique, simplified mathematical description of the physical
framework, geometry, active processes, and boundary condi-
tions present in a reference subsurface hydrologic system.

3.1.6.1 Discussion—The term “nonparameterized computer
code” refers to a generalized computer program in which
values of parameters can be specified by the user.

3.1.7 quality assurance (QA), n—in the development of a
ground-water modeling code, the procedural and operational
framework put in place by the organization managing the code
development project, to ensure technically and scientifically
adequate execution of all project tasks, and to ensure that the
resulting software product is functional and reliable.

3.2 For definitions of other terms used in this guide, see
Terminology D 653.

4. Significance and Use

4.1 Ground-water modeling has become an important meth-
odology in support of the planning and decision-making
processes involved in ground-water management. Ground-
water models provide an analytical framework for obtaining an
understanding of the mechanisms and controls of ground-water
systems and the processes that influence their quality, espe-
cially those caused by human intervention in such systems.
Increasingly, models are an integral part of water resources
assessment, protection, and restoration studies and provide
essential and cost-effective support for planning and screening
of alternative policies, regulations, and engineering designs
affecting ground water. It is therefore important that before
ground-water modeling codes are used as planning and
decision-making tools, their credentials are established and
their suitability determined through systematic evaluation of

3 Annual Book of ASTM Standards, Vol 11.05.
4 The boldface numbers in parentheses refer to a list of references at the end of
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their correctness, performance characteristics, and applicabil-
ity. This becomes even more important because of the increas-
ing complexity of the hydrologic systems for which new
modeling codes are being developed.

4.2 Quality assurance in ground-water modeling provides
the mechanisms and framework to ensure that the analytic tools
used in preparing decisions are based on the best available
techniques and methods. A well-executed quality assurance
program in ground-water modeling provides the information
necessary to evaluate the reliability of the performed analysis
and the level to which the resulting advice may be incorporated
in decision-making regarding the management of ground-water
resources.

4.3 This guide is intended to encourage consistency and
completeness in the development and evaluation of existing
and new ground-water modeling codes by describing appro-
priate code development and quality assurance procedures and
techniques.

4.4 In the past, some ground-water modeling codes have
been developed that have turned out to be quite useful without
having been subject to all of the procedures described in this
guide. Nonetheless, the procedures described in this guide will
give greater assurances that a code does what its developers
intended it to do and that a rational basis is available to judge
code adequacy and limitations.

5. Code Development Process

5.1 In ground-water modeling, code development consists
of the following:

5.1.1 Definition of design criteria and determining appli-
cable software standards and practices,

5.1.2 Development of algorithms and program structure,
5.1.3 Computer programming,
5.1.4 Preparation of documentation,
5.1.5 Code testing, and
5.1.6 Independent review of scientific principles, math-

ematical framework, software, and documentation.
5.2 Code design criteria should address the following:
5.2.1 The physical system to be modeled in terms of

geometry, physical processes and properties, and stresses,
5.2.2 Assumptions made in deriving the mathematical

framework,
5.2.3 Dimensionality, and spatial and temporal discretiza-

tion,
5.2.4 Type and form of computed entities,
5.2.5 Type and form of code operation control,
5.2.6 Code structure, and programming language,
5.2.7 Input/output structure and applicable data exchange

formats,
5.2.8 User interface,
5.2.9 Computer platforms for implementation, and
5.2.10 Type, contents, structure, and level of detail of

documentation.
5.3 The development of a specific ground-water modeling

code may be part of a research or development project, based
on an existing mathematical model, or derived from an existing
set of modeling codes.

5.3.1 Code development in ground-water modeling is often
part of research aimed at acquiring new, quantitative knowl-

edge about nature through observation, hypothesizing, and
verifying deduced relationships, leading to the establishment of
a credible theoretical framework for the observed phenomena.
The resulting research model represents a fundamental under-
standing of the studied ground-water system.

5.3.2 The object for model research in ground water is a
subset of the hydrologic system, called the reference system. It
contains selected elements of the global hydrologic system.
The selection of a particular reference system is influenced by
regulatory and management priorities, and by the nature of the
hydrologic system (Fig. 1). The conceptual model of the
selected reference system forms the basis for quantifying the
causal relationships among various components of this system,
and between this system and its environment. These relation-
ships are defined mathematically, resulting in a mathematical
model. If the solution of the mathematical equations is com-
plex or when many repetitious calculations are required, the
use of computers is essential. This requires the coding of the
solution to the mathematical problem in a programming
language, resulting in a computer code. The conceptual formu-
lations, mathematical descriptions, and computer coding con-
stitute the (generic) model (Fig. 1). Attributing the parameters
and stresses in the generic model results in an operational
model of the reference system.

5.3.3 To determine the validity of the model, questions need
to be answered, such as the following:

5.3.3.1 Does the conceptual model on which the simulation
code is based truly represent the reference system?

5.3.3.2 Does the mathematical model closely represent the
conceptual model, including the hydrogeologic framework
present, and the processes and stresses present? If not, are the
simplifications, made to facilitate the formulation of a math-
ematical model, acceptable and relevant?

5.3.3.3 Does the computer code correctly represent the
model’s mathematical framework?

5.3.3.4 Will the model be able to represent the responses of
the reference system to various stress scenarios?

5.3.4 The two major approaches to achieve acceptance of a
ground-water model are: (1) the evaluation or (peer) review

FIG. 1 Concepts and Terms Related to the Development and
Testing of a Ground-water Modeling Code (1, modified)
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process covering all phases of the code development process;
and (2) quantitative comparison with independently obtained
data for the reference ground-water system.

NOTE 3—Determining the correctness of the model is basically part of
the scientific discovery process and as such is a rather subjective and
open-ended process. When will a model, or for that matter a theory, be
accepted by the scientific community? Often, this question is replaced by
another one: can the model and its underlying theoretical and conceptual
assumptions be refuted?

5.3.5 Since the development of most ground-water model-
ing codes is based on a mechanistic description of the physical
processes, the resulting computer codes can be generalized and
applied to other ground-water systems comparable to the
reference system. The level of generalization found in the
ground-water modeling code is a function of the generality of
the model, that is, how common is the reference ground-water
system in the real world (allowing for variation in model
parameters) and how many different subsets of the model are
encountered in solving real-world problems. Determining the
applicability of the generalized computer code (that is, code
without numerical values for geometry, parameters, boundary
conditions, and stresses) requires analysis of the adequateness
of the model, the extent of the code’s functions and operational
characteristics, and the results of code testing.

5.4 Code testing is an integral part of code development.
During the programming phase, testing is focussed on indi-
vidual algorithms, subroutines, functions, and other program
elements. At the end of the initial programming phase, the code
should be extensively tested using the procedures described in
Section 7.

5.5 The preparation of the program documentation starts at
the beginning of the code development process and is integral
to all stages of code development. Specifically, documentation
of theoretical foundation, code design, capabilities, and pro-
gram structure should be prepared and evaluated during the
design and programming phases of the project. Documentation
regarding the operation and performance of the code should be
prepared before and during initial testing by code developers.

5.6 The final step in code development is independent
review and testing.

NOTE 4—Although optimal quality assurance requires the software
development project to start with the formulation of code design criteria,
this step is often absent in the development of a ground-water modeling
code. Therefore, code applicability assessment is crucial in determining
the nature of physical systems and management issues that can be
addressed by the code. In part, such an assessment is based on detailed
evaluation of the functionality description of the code. In-depth analysis of
successful site-specific applications provides additional information re-
garding the utility of the code, enhancing its credibility with users and
decision-makers.

6. Code Development Quality Assurance Procedure

6.1 In software engineering terms, software quality assur-
ance (SQA) consists of the application of procedures, tech-
niques, and tools throughout the software life cycle, to ensure
that the products conform to prespecified performance require-
ments (2,5). The SQA procedures include developing a QA
plan, record keeping, and establishing a project QA organiza-
tion. The SQA techniques include auditing, design inspection,
code inspection, error-prone analysis, functional testing, logi-

cal testing, path testing, reviewing, and walk-throughs. The
SQA tools include text-editors, software debuggers, source
code comparitors, and language processors. All of these need to
be identified in the initial stage of the software development
project as the software design criteria are determined(2,5). The
SQA should be applied to all codes currently in use and yet to
be developed, whether for research or water resource manage-
ment purposes.

6.2 The following code development QA procedures are
considered minimum requirements for ground-water modeling
codes to be used in support of ground-water management and
environmental decision-making(1):

6.2.1 Determination and documentation of code design
criteria, including functionality (for example, hydrogeologic
framework, processes, boundary conditions, and computed
variables), input/output requirements (for example, graphics,
file handling, and file formats), hardware platform(s), program-
ming language (for example, language type, compiler, industry
standard), program structure, and program performance,

6.2.2 Design and documentation of code structure, algo-
rithms, data structures, and input/output characteristics,

6.2.3 Documentation of code development progress (for
example, record keeping of implementation strategy for design
criteria, problems in coding or performance, and implemented
variances of the design),

6.2.4 Testing of program structure and coding (code verifi-
cation) and subsequent documentation,

6.2.5 Documentation of code characteristics, capabilities,
and performance, and preparation of operational instructions
(that is user’s instructions),

6.2.6 Scientific and technical reviews of code foundation,
coding, performance, and documentation, and

6.2.7 Record keeping (reports, paper files, and electronic
files) and administrative auditing of adherence to QA plans and
QA procedures.

7. Code Testing

7.1 A systematic approach to code testing combines ele-
ments of error-detection, evaluation of the operational charac-
teristics of the code, and assessment of its suitability to solve
certain types of management problems, with dedicated test
problems, relevant test data sets, and informative performance
measures.

7.2 The results of code testing are expressed in terms of
correctness (for example, in comparison with a benchmark),
reliability (for example, convergence and stability of solution
algorithms, and absence of terminal failures),effıciency of
coded algorithms (in terms of numerical accuracy versus code
execution time, and memory and mass storage requirements),
and resources requiredfor model setup and analysis (for
example, input preparation time and effort needed to make
output ready for graphic analysis)(6).

7.3 Code testing should sequentially follow the following
series of steps(6):

7.3.1 Analysis of the code’s functionality in terms of
simulation functions, operational features, mathematical
framework, and software implementation,

7.3.2 Identification of potential code performance issues
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based on analysis of simulated processes, mathematical solu-
tion methods, computer limitations, and execution environ-
ment,

7.3.3 Development of a code testing strategy and test
problems that address relevant code performance issues as they
are viewed by all stakeholders (for example, researchers, code
developers, code users, fund managers, regulatory decision
makers, project decision makers, and so forth),

7.3.4 Execution of tests and analysis of results using appro-
priate comprehensive, informative, and accurate graphic and
statistical techniques,

7.3.5 Collection of code information issues and code test
problem objectives in overview tables and matrix displays
reflecting completeness of testing, as well as correctness,
accuracy, efficiency, and field applicability of the tested code,

7.3.6 Identification of performance strengths, and weak-
nesses of the code and testing procedure,

7.3.7 Documentation of test objectives, model setup for
both the tested code, and the benchmark (structure, discretiza-
tion, and parameters), and results for each test (for both the
tested code and the benchmark) in report form and as electronic
files including input data, computational results, statistical

analysis of all computed results, and graphical representation
of key results, and

7.3.8 Preparation of an executive summary of functionality,
test strategy and results.

7.4 Functionality Analysis and Performance Evaluation
7.4.1 Functionality Analysis:
7.4.1.1 Functionality analysis involves the identification and

description of the functions of a simulation code in terms of
model framework geometry, simulated processes, boundary
conditions, and analytical capabilities, and the subsequent
evaluation of each code function or group of functions for
conceptual correctness and computational accuracy (including
convergence for a practical range of parameter values) and
consistency (including numerical stability) (see Table 1)(6).

7.4.1.2 The information generated by functionality analysis
is organized into a summary structure, or matrix, that brings
together the description of code functionality, code-evaluation
status, and appropriate test problems. This functionality matrix
is formulated combining a complete description of the code
functions and features with the objectives of targeted test
problems (see Fig. 2). The functionality matrix illustrates the
extent of the performed functionality analysis(6).

TABLE 1 Functions and Features of a Typical Three-Dimensional Saturated Flow and Transport Model (5)

General Model Capabilities: Parameter Representations:
Uncoupled Darcian ground-water flow and nonconservative single-component

solute transport in saturated porous medium
Hydraulic conductivity: heterogenous (variable in space), anisotropic
Storage coefficient: heterogeneous

Distributed parameter specification Longitudinal dispersivity: heterogeneous
Spatial Orientation: Transverse dispersivity: heterogeneous

1-D horizontal Sorption coefficient homogeneous (single value for total model area)
1-D vertical Decay coefficient: homogeneous
2-D horizontal Fluid Conditions:
2-D vertical Density constant in time and space
Quasi 3-D (layered) Viscosity constant in time and space
Fully 3-D Boundary Conditions for Flow:

Grid Design: Fixed head
1-D, 2-D, or 3-D block-centered finite difference grid with constant or variable
cell size

Prescribed time-varying head
Zero flow

Time Discretization: Fixed boundary flux
Steady state flow Prescribed time-varying boundary flux
Transient flow Areal recharge variable in space and time
Transient transport Induced recharge from or discharge to stream; stream need not be directly
Variable time step size connected to ground water
Multiple transport time steps per flow time step Drains
Multiple flow time steps per stress period Evapotranspiration dependent on distance
Variable stress periods Surface to water table

Matrix Solvers: Free surface, seepage face
SOR Solute Transport Processes:
ADI Advection
PCG Hydrodynamic dispersion

Aquifer Conditions: Molecular diffusion
Confined Linear equilibrium sorption
Leaky-confined First-order radioactive decay
Unconfined First-order chemical/microbial decay

Aquifer Systems: Boundary Conditions for Solute Transport:
Single aquifer Fixed concentration
Single aquifer/aquitard Prescribed time-varying concentration
Multiple aquifers/aquitards Zero solute flux

Variable Aquifer Conditions in Space: Specified constant or time-varying solute flux
Variable layer thickness Areal recharge of given (constant or time-varying) concentration
Confined and unconfined conditions in same aquifer Induced infiltration of given (constant or time-varying) concentration
Aquitard pinch out Concentration-dependent solute flux
Aquifer pinch out Sources/sinks:

Changing Aquifer Conditions in Time: Injection/production well with constant or time-varying flow rate
De-saturation of cells at water table Injection well with constant or time-varying concentration
Re-saturation of cells at water table Injection well with constant or time-varying solute flux
Confined/unconfined conversion Production well with aquifer concentration-dependent solute outflux

Springs with head-dependent flow rate and aquifer concentration-dependent
solute flux
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7.4.2 Performance Evaluation:
7.4.2.1 Performance evaluation is aimed at characterizing

the operational characteristics of the code in terms of: (1)
correctness, (2) overall accuracy; (3) reliability; (4) sensitivity
for grid orientation and resolution, and for time discretization;
(5) efficiency of coded algorithms (including bandwidth, rate
of convergence, memory usage, and disk I/O); and (6) level of
effort and resources required for model setup and simulation
analysis(6).

7.4.2.2 Results of the performance evaluation are expressed
both quantitatively and qualitatively in checklists and in tabular
form (see Tables 2-5 and Table 6). Reporting on performance
evaluation should provide potential users information on the
performance as a function of problem complexity and setup,
selection of simulation control parameters, and spatial and
temporal discretization.

7.4.3 The functionality matrix and performance tables, to-
gether with the supporting test results and comments, should
provide the information needed to select a code for a site-
specific application and to evaluate the appropriateness of a
code used at a particular site.

7.5 Code Testing Strategy:
7.5.1 The code testing strategy represents a systematic,

efficient approach to the comprehensive testing of the code.
The code testing strategy includes:

7.5.1.1 Formulation of test objectives (as related to code
functionality), and of test priorities (based on considerations
listed in 7.3.2 and 7.3.3 and on available resources for testing)
(see Table 7),

7.5.1.2 Selection or design, or both, of test problems and
determination of type and extent of testing for selected code
functions or application-dependent combinations of code func-
tions,

7.5.1.3 Determination of level of effort to be spent on
sensitivity analysis for each test problem,

7.5.1.4 Selection of the qualitative and quantitative mea-
sures to be used in the evaluation of the code’s performance,
and

7.5.1.5 Determination of the level of detail to be included in
the test report and the format of reporting (see Tables 8 and 9,
and Table 10).

7.5.2 There are three levels of testing(1):
7.5.2.1 At Level I, a code is tested for correctness of coded

algorithms, code logic, and programming errors by: (1) con-
ducting step-by-step numerical walk-throughs of the complete
code or through selected parts of the code; (2) performing
simple, conceptual or intuitive tests aimed at specific code
functions (see Fig. 3); and (3) comparing with independent,
accurate benchmarks (for example, analytical solutions).

NOTE 5—If the benchmark computations themselves have been made
using a computer code, this computer code should in turn be subjected to
rigorous testing by comparing computed results with independently
derived and published data.

7.5.2.2 At Level II, a code is tested to: (1) evaluate functions
not addressed at Level I; and (2) evaluate potentially problem-
atic combinations of functions. At this level, code testing is
performed by intracomparison (that is, comparison between
runs with the same code using different functions to represent
a particular feature) and intercomparison (that is, comparison
between different codes simulating the same problem). Typi-
cally, synthetic data sets are used representing hypothetical,
often simplified ground-water systems.

7.5.2.3 At Level III, a code (and its underlying theoretical

FIG. 2 Generic Model Functionality Matrix; Checked Cells
Indicate that the Objective of the Test Problem Corresponds with

a Model Function (6)

TABLE 2 Example Performance Evaluation Table—Part 1 (6)

Test
Case

Number
of

Nodes

Number
of

Time
Steps

Time
Step,
days

Conver-
gence,

number of
itera-
tionsA

Central
Proc-
essor
Use,

s

Memory
Use,

Kbytes

Set-up
Time,

h

1 500 1 10 5 11 550 2
2 500 1 10 50 (maxi-

mum; did
not con-
verge)

205 550 1.5

3 500 1 10 11 34 550 1.5
4 500 1 10 22 55 550 2
5a 500 1 10 7 21 550 1
5b 5000 1 10 9 309 3880 4
5c 500 10 1 21 80 550 1

AConvergence is expressed as the number of iterations needed to reach a
convergence criterion. In general, core performance depends on the nature and
value of the convergence criterion. Most codes allow the user to specify the value
of the specific type of convergence criterion (or types) used in the code.

TABLE 3 Example Performance Evaluation Table—Part 2 (6)

Test
Case

Sensitivity
to Grid
SizeA

Sensitivity
to Grid

OrientationB

Sensitivity
to Time

DiscretizationC
StabilityD

Sensitivity to
Convergence

CriterionE

1 0.1 0.01 0.1 satisfactory 1.001
2 0.02 0.007 0.2 unsatisfactory 0.92
3 0.03 0.02 0.1 satisfactory 1.001
4 0.001 0.008 0.3 satisfactory 0.998
5a 0.3 0.04 0.3 satisfactory 0.9998
5b 0.25 0.05 0.25 satisfactory 0.999
5c 0.21 0.045 0.1 satisfactory 0.9997

ASensitivity to grid size is determined by comparing the sum of absolute values
of the differences in computed nodal values with the sum of computed nodal
values divided by 2, employing two grid designs differing by a factor of 10 in the
number of active nodes.

BSensitivity to grid orientation is determined by comparing the sum of absolute
values of the differences in computed nodal values with the sum of computed
values divided by 2, using two identical grid designs rotated 45° with respect to
each other.

CSensitivity to time discretization is determined by comparing the sum of
absolute values of the differences in computed nodal values with the sum of
computed values divided by 2, using for a constant period two time discretizations
differing by a factor of 10.

DStability is rated “unsatisfactory” if in one or more runs stability problems are
encountered; otherwise stability is rated “satisfactory.”

ESensitivity to convergence criterion is a measure for reproducibility. It is given
as the ratio of the sum of the dependent variable computed for two values of the
convergence criterion differing one order of magnitude.
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framework) is tested to determine how well a model’s theo-
retical foundation and computer implementation describe ac-
tual system behavior, and to demonstrate a code’s applicability
to representative field problems. At this level, testing is

performed by simulating a field or laboratory experiment and
comparing the calculated and independently observed cause-
and-effect responses.

TABLE 4 Functionality Issues for Confined/Unconfined Conditions (6)

Functionality Issue Test Objective Type of Test

In unconfined aquifers, transmissivity is dependent on the
computed heads.

To determine if the code correctly represents the water
table under steady-state conditions. How sensitive are
the results for the difference between initial conditions
and final heads, or boundary conditions? Does the
number of model layers make a difference?

Steady-state benchmark Level
1B

In unconfined aquifers, a rising water table might rise
above the top of the initial model layer, invading dry cells
(saturation/wetting).

To determine if the code functions properly when water
invades dry model cells, both under steady-state
conditions (initial condition set below final water-bearing model
cells) and transient conditions.

Steady-state, transient
benchmark Level 1B

In unconfined aquifers, a falling water table might drop
below the bottom of the initial (partially) water-filled cells
(de-saturation).

To determine if the code functions properly when water evacu-
ates wet model cells and fully water-filled cells become partially
water-filled, both under steady-state conditions (initial condition
set above final water bearing model cells) and transient
conditions.

Steady-state, transient
benchmark Level 1B

Cyclic variations of the water table position over more than
one model layer require repeated desaturation and
resaturation of model layers.

To determine if accuracy (in terms of heads and mass
balance) is maintained over multiple desaturation and rewetting
cycles, and if no stability problems occur.

Transient benchmark Level 1B

For unconfined conditions, transmissibility is a function of
saturated thickness. Various schemes exist to treat the
resulting nonlinear terms, including (damped) corrections
at each iteration or time step, or both.

To determine the accuracy for water table conditions for
various steady-state and transient conditions (for example, poor
initial conditions, and small hydraulic conductivity or storativity).

Steady-state transient
conceptual test
intercomparison Level 1A

When the head in a confined layer drops below the top of
that layer, conditions become unconfined. This phenomenon
typically occurs in areas of the model domain
where discharge is significant. If the discharge diminishes
or is reversed, conditions may become confined again.

To determine proper assignment of storativity and other
code settings when conditions change between confined and
unconfined
(in both quasi and fully 3-D mode), and to determine stability
under these conditions.

Transient benchmark
intra-comparison Level 1B
and 2A

Most 2-D and 3-D codes include an option to simulate
ground-water flow in a quasi three-dimensional mode.

To determine if quasi three-dimensional mode works properly
for unconfined and semi-confined multilayer systems.

Transient benchmark Level 1A

TABLE 5 Functionality Issues for Advective and Dispersive Solute Transport (6)

Functionality Issue Test Objective Type of Test

Advection-dominated transport often creates
numerical problems in the vicinity of the solute
front.

To determine accuracy in terms of concentrations and
mass balance, to evaluate stability and the
occurrence of oscillations and numerical dispersion, and to
perform sensitivity analysis with respect to transport
parameter values, and spatial and temporal discretization.

Steady-state uniform flow transient transport
benchmark Level 1B

Accuracy of simulation of dispersive transport is
dependent on grid orientation. Inclusion of cross
terms of the dispersion coefficient may improve
accuracy.

To determine sensitivity of concentration distribution and mass
balance for grid orientation.

Steady-state uniform flow transient transport
benchmark Level 1B

Accuracy of dispersive transport may be
influenced by the contrast in the main directional
components of the dispersivity, especially when
using non-optimal grid orientation.

To determine accuracy of concentration distribution
and mass balance for different ratios for the dispersivity
components.

Steady-state uniform flow transient transport
benchmark Level 1B

Sometimes, advective-dispersive transport is
negligible and molecular diffusion is prominent.

To determine accuracy in terms of concentrations and
mass balance when molecular diffusion is important.

Transient benchmark Level 1A

TABLE 6 Functionality Issues for Solute Fate (Retardation and Decay) (6)

Functionality Issue Test Objective Type of Test

Sorption is often represented as a linear or nonlinear
reversible equilibrium reaction, represented by a
retardation coefficient. Some codes implicitly maintain
mass balance in both the dissolved and solid phases,
other codes display mass balance problems under
certain scenarios.

To evaluate correctness of reversible sorption function
and to determine accuracy in terms of
concentrations and mass balance for various
sorption rates (check for reversibility).

Steady-state uniform flow transient transport hand
calculations (mass balance) benchmark
(concentrations) Level 1A, 1B

Some codes include zero-order production or removal in
the source/sink term of the governing equation.

To evaluate correctness and accuracy of this function
in terms of concentrations and mass balance.

Steady-state uniform flow transient transport hand
calculations (mass balance) benchmark
(concentrations) Level 1A, 1B

Many codes include first-order production or decay in the
source/sink term of the governing equation. Some codes
display instabilities or inaccuracies when half-life times
are about the same order of magnitude as or smaller
than the time steps.

To evaluate correctness and accuracy of this function
in terms of concentrations and mass balance for
both large and small values of the decay coefficient
(including zero).

Steady-state uniform flow transient transport hand
calculations (mass balance) benchmark
(concentrations) Level 1A, 1B
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NOTE 6—Because measured values of model input, system parameters,
and system responses are samples of the real system, they inherently
incorporate measurement errors, are subject to uncertainty, and may suffer
from interpretive bias. Therefore, this type of testing will always retain an
element of incompleteness and subjectivity.

7.5.3 First, Level I testing is conducted (often during code
development), and, if successfully completed, it is followed by
Level 2 testing. The code may gain further credibility and user
confidence by being subjected to Level 3 testing (that is, field
or laboratory testing).

7.5.4 Although, ideally, code testing should be performed
for the full range of parameters and stresses the code is
designed to simulate, in practice this is often not feasible due
to budget and time constraints. Therefore, prospective code
users need to assess whether the documented tests adequately
address the conditions expected in the target application(s). If
previous testing has not been sufficient in this respect, addi-
tional code testing may be necessary.

7.6 Code Testing Evaluation Criteria:
7.6.1 An important aspect of code testing is the definition of

informative and efficient measures for use as evaluation or
performance criteria. Such measures should characterize quan-
titatively the differences between the results derived with the
simulation code and the benchmark, or between the results
obtained with two comparable simulation codes.

7.6.2 Evaluation of code testing results should be based on:

(1) visual inspection of the graphical representation of vari-
ables computed with the numerical model and its benchmark;
and (2) quantitative measures of the goodness-of-fit.

7.6.3 Graphical measures are especially significant for test
results that do not lend themselves to statistical analysis. For
example, graphical representation of solution convergence
characteristics may indicate numerical oscillations and insta-
bilities in the iteration process.

7.6.3.1 Practical considerations may prevent the use of all
data-pairs in the generation of graphical measures. Thus, a
subset of data-pairs may be selected for use with graphical

TABLE 7 Major Test Issues for Three-dimensional Finite-
difference Saturated Ground-water Flow and Solute Transport

Codes (6)

General Features:
Mass balances (regular versus irregular grid)
Variable grid (consistency in parameter and stress allocation)

Hydrogeologic Zoning, Parametrization, and Flow Characteristics:
Aquifer pinch out, aquitard pinch out
Variable thickness layers
Storativity conversion in space and time (confined-unconfined)
Anisotropy
Unconfined conditions
Dewatering
Sharp contrast in hydraulic conductivity

Boundary Conditions for Flow:
Default no-flow assumption
Areal recharge in top active cells
Induced infiltration from streams (leaky boundary) with potential for
dewatering below the base of the semi-pervious boundary
Drain boundary
Prescribed fluid flux
Irregular geometry and internal no-flow regions

Transport and Fate Processes:
Hydrodynamic dispersion (longitudinal and transverse)
Advection-dominated transport
Retardation (linear and Freundlich)
Decay (zero and first-order)
Spatial variability of dispersivity
Effect of presence or absence cross-term for dispersivity

Boundary Conditions for Solute Transport:
Default zero solute-flux assumption
Prescribed solute flux
Prescribed concentration on stream boundaries
Irregular geometry and internal zero-transport zones
Concentration-dependent solute flux into streams

Sources and Sinks:
Effects of time-varying discharging and recharging wells on flow
Multi-aquifer screened wells
Solute injection well with prescribed concentration (constant and time-
varying flow rate)
Solute extraction well with ambient concentration

TABLE 8 Elements of a Test Report

Introduction

Program name
Program title
Tested version
Release date
Author/custodian
Reviewer (name, organization)
Review date
Short description
Computer and software requirements
Test environment (computer, operating system, and so forth
Reviewed materials/documentation
Installation review
Discussion of general operation (batch, interactive, graphics)
Terms of availability (legal status, and so forth)
Type/level of support

Testing

Analysis of code functions and preparation of functionality description
Overview and discussion and reevaluation of testing performed by code
authors
Overview and detailed description of additional test performed
Presentation and discussion of functionality analysis matrix
Presentation and discussion of performance tables
Optional discussion of applicability issues both from a theoretical point of view,

as well as based on applicability testing

Conclusions

Testing (performance, limitations, cautions)
Documentation (completeness and correctness of functionality description,

correctness of theory, consistency of mathematical description and coded
functionality, correctness and completeness of user’s instructions)

Installation and general operation
Code setup (how easy/difficult it is to run the code)
Specific hints/tricks learned during testing, not present in documentation

TABLE 9 Test Details to be Discussed in Test Report

General problem description (including assumptions, limitations, boundary
conditions, parameter distribution, time-stepping, figures depicting problem
situation)

Test objectives (features of simulation code, specifically tested by test
problem)
Benchmark reference
If feasible, benchmark solution (for example, analytical solution)
Reference to benchmark implementation (hand calculation, dedicated

software, generic mathematical software, and so forth)
Test data set
Model setup, discretization, implementation of boundary condition,

representation of special problem features (for both tested code and
benchmark code; electronic input files)

Results (table of numerical and benchmark results (if available) for the
dependent variable at selected locations and times; mass balances;
statistical measures and supporting figures; electronic results files)

Sensitivity analysis strategy and results
Discussion of results
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measures. The selection of a set of representative sample
data-pairs may be based on symmetry considerations, model
domain areas with potential higher deviations, or on specific
interest in subdomains (that is, vertical or horizontal slices of
the model domain).

7.6.3.2 There are five types of graphical evaluation tech-
niques particularly suited (see Table 11 and Table 12):

(1) The X-Y plots or line graphs of spatial (for example,
distance) or temporal behavior of dependent variable and other
computed entities (see Figs. 4-6, and Fig. 7),

(2) One-dimensional column plots or histograms (specifi-
cally to display test deviations),

(3) Combination plots of line graphs of dependent variable
and column plots of deviations (see Fig. 8),

(4) Contour and surface plots of the spatial distribution of
the dependent variable and the residuals, and

(5) Three-dimensional, isometric, column plots or three-
dimensional histograms (see Fig. 9 and Fig. 10).

7.6.3.3 The conclusions from visual inspection of graphic
representations of testing results may be described qualitatively
(and subjectively) by such attributes as “poor,” “reasonable,”
“acceptable,”“ good,” and “very good” (see Fig. 11).

7.6.4 There are three general procedures, coupled with
standard linear regression statistics and estimation of error
statistics, to provide quantitative goodness-of-fit measures(7):

7.6.4.1 Paired-data Performance—The comparison of
simulated and observed data for exact locations in time and
space,

7.6.4.2 Time and Space Integrated, Paired-data
Performance—The comparison of spatially and temporally
integrated or averaged simulated and observed data, and

7.6.4.3 Frequency Domain Performance—The comparison
of simulated and observed frequency distributions.

NOTE 7—The organization and evaluation of code intercomparison
results can be cumbersome due to the potentially large number of
data-pairs to be analyzed if every computational node is included. This can
be mitigated by analyzing smaller, representative subsamples of model
domain data-pairs. The representativeness of the selected data-pairs is
often a subjective judgment. For example, in simulating one-dimensional,
uniform flow, the data pairs should be located on two lines parallel to the
flow direction, one in the center of the model domain and one at the edge
(see Fig. 12). Another example is the simulation of the Theis problem;
here, two lines of data pairs should be chosen parallel to the two horizontal
principal hydraulic conductivity axes, while a third set of data pairs should
be on a line at 45° to these axes (see Fig. 13). Test cases that are

symmetrical can be analyzed for a smaller portion of domain based upon
the type of symmetry present. For example, test cases that have radial
symmetry can be divided into four equal representative radial slices; this
significantly decreases the required number of data pairs in the analysis
and considerably reduces the evaluation effort.

7.6.5 Useful quantitative evaluation measures for code test-
ing include the following(6):

7.6.5.1 Mean Error (ME), defined as the mean difference
(that is, deviation) between the dependent variable calculated
by the numerical modelhcand the benchmark value of the
dependent variablehbfor n data pairs:

ME 5
(~hc 2 hb!

n (1)

7.6.5.2 Mean Absolute Error(MAE), defined as the aver-
age of the absolute values of the deviations:

MAE5
( | ~hc 2 hb!|

n (2)

7.6.5.3 Positive Mean Error(PME) and Negative Mean
Error (NME), defined as the ME for the positive deviations and
negative deviations, respectively;

7.6.5.4 Mean Error Ratio (MER), a composite measure
indicating systematic overpredicting or underpredicting by the
code:

MER5
|ME|
ME 3

|NME|
PME ~for PME, |NME|! (3)

MER5
|ME|
ME 3

PME
|NME| ~for PME. |NME|! (4)

7.6.5.5 Maximum Positive Error(MPE) and Maximum
Negative Error(MNE), defined as the maximum positive and
negative deviation, respectively, indicating potential inconsis-
tencies or sensitive model behavior;

7.6.5.6 Root Mean Squared Error(RMSE), defined as the
square root of the average of the squared differences between
the dependent variable calculated by the numerical model and
its benchmark equivalent:

RMSE5Œ(~hc 2 hb!
2

n (5)

7.6.6 Various computed variables may be the focus of
graphic or statistical comparison:

7.6.6.1 Saturated Flow Codes—Hydraulic heads (in space
and time), head gradients, global water balance, internal and
boundary fluxes, velocities (direction and magnitude), flow
path lines, capture zones, travel times, and locations of free
surfaces and seepage surfaces,

7.6.6.2 Unsaturated Flow Codes—Hydraulic heads or suc-
tion heads, water contents or saturations, head gradients, global
water balance, and internal and boundary fluxes, and

7.6.6.3 Solute Transport Codes—Concentrations, mass
fluxes global mass balance (per species), and breakthrough
curves at observation points and sinks (wells and streams).

8. Documentation of Code Design and Code Development

8.1 The audit trail for QA in model development consists of
reports and files on the development of the model and should

TABLE 10 Elements of the Executive Summary of the Test
Report

Program name, title, version, release date, authors, custodian
Reviewer (name, organization)
Detailed program description (functionality)
Computer/software requirements
Terms of availability and support
Overview of testing performed by authors
Overview of additional testing performed
Discussion of specific test results (illustrating strengths and weaknesses)
Discussion of completeness of testing (functionality matrix)
Representative performance information
Main conclusions on test results
Comments on installation, operation, and documentation
List of main documentation references
Tables providing overview of performed tests and performance information
Figures illustrating key results
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include the following:
8.1.1 . Report on the development of the code including the

(standardized and approved) programmer’s notebook, and the
items listed in 6.2,

8.1.2 Test report including items listed in 7.3.7,
8.1.3 Changes and verification of changes made in code

after baselining, and
8.1.4 Any special conditions, operational restrictions, or

other limitations for code use.
8.2 Various files should be retained (in hard copy and, at

higher levels, in digital form) including the following:

8.2.1 Executable image and source code of baselined ver-
sion of the tested code,

8.2.2 Run-time version and data files or spreadsheet files
representing the benchmark for each test, and

8.2.3 Input and output of the tested code for each test run.

9. Software Documentation

9.1 Software or computer code documentation can be de-
scribed as the information recorded during the design, devel-
opment, and maintenance of a computer program for the
purpose of explaining pertinent features of the program and

FIG. 3 Example of a Conceptual Test Problem: Temperature Distribution (°C) in a Homogeneous Aquifer (6)
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aspects of the data processing system, including purposes,
methods, logic, relationships, capabilities, limitations, and
operational instructions.

9.2 Code documentation is the principal instrument for
those involved in a modeling effort, such as the code developer,
code maintenance staff, computer system operators, and code
users, to communicate regarding all aspects of the software.

9.3 The main purposes of software documentation are as
follows (8):

9.3.1 To record technical information that enables system
and program changes to be made quickly and effectively,

9.3.2 To enable programmers and system analysts, other
than software originators, to use and to work on the programs,

9.3.3 To assist the user in understanding what the program
is about and what it can do,

9.3.4 To increase program sharing potential,
9.3.5 To facilitate auditing and verification of program

operations, that is, code evaluation,
9.3.6 To provide managers with information to review at

significant developmental milestones so that they may deter-
mine that project requirements have been met and that re-
sources should continue to be expended,

9.3.7 To reduce the disruptive effects of personnel turnover,
9.3.8 To facilitate understanding among managers, develop-

ers, programmers, operators, and users by providing informa-
tion about maintenance, training, and changes in and operation
of the software, and

9.3.9 To inform other potential users of the functions and
capabilities of the software, so that they can determine whether
it serves their needs.

9.4 A complete set of code documentation consists of three
types of manuals providing code information for managers,
users, and programmers.

9.4.1 The manager’s manual is a summary containing: (1)
description of code functions, underlying principles and as-
sumptions, and application limitations; (2) code development
history; (3) summary test report with an overview of the
performed testing and key findings; and (4) a discussion of
current and future applications.

9.4.2 The user’s manual should include an in-depth treat-
ment of the equations on which the code is based, of the

underlying assumptions, of the boundary conditions that are
incorporated in the code, of the method and algorithms used to
solve the equations, and of the limiting conditions resulting
from the chosen approach. The documentation must include
user’s instructions for implementing and operating the code,
and for preparing data files. It should present examples of
model formulation (for example, grid design, assignment of
boundary conditions), complete with input and output file
descriptions and a trouble-shooting guide. Finally, user’s
documentation should include an extensive code testing report.

9.4.3 The programmer’s manual should include code speci-
fications, code description, flow charts, description of routines,
data base description, source listing and error messages, and
should provide instructions for code modification and mainte-
nance.

9.5 The code itself should be well-structured and internally
well-documented; where possible, self-explanatory parameter,
variable, subroutine, and function names should be used.

NOTE 8—While documentation should commence at the very beginning
of a software development project, it is often left until the project is
otherwise complete. This practice makes documenting the code difficult
because it requires searching old (often incomplete and incomprehensible)
records prepared by personnel that may have left the project, or relying on
fading staff recollections.

10. Scientific and Technical Reviews

10.1 A complete scientific and technical review of a ground-
water modeling code comprises the following:

10.1.1 Examination of underlying concepts, governing
equations, and algorithms chosen,

10.1.2 Evaluation of documentation and general ease of use,
10.1.3 Inspection of program structure and program logic,
10.1.4 Error analysis,
10.1.5 Examination of the computer coding, and
10.1.6 Evaluation of the performed code testing.
10.2 Model Examination:
10.2.1 Model examination determines whether anything

fundamental was omitted in the initial conceptualization of the
reference system. Such a procedure determines whether the
concepts underlying the model adequately represent the nature
of the system under study, and identifies the processes and
actions pertinent to the model’s intended use. The examination
also determines whether the equations representing the various
processes are valid within the range of the model’s applicabil-
ity, whether these equations conform mathematically to the
intended range of the model’s use, and whether these equations
conform mathematically to the intended range of the model’s
use, and whether the selected solution approach is the most
appropriate. Finally, model examination determines the appro-
priateness of the selected initial and boundary conditions, and
establishes the applicability range of the model.

10.2.2 For complex modeling codes, detailed examination
of the implemented algorithms is required to determine
whether appropriate numerical schemes have been adopted.
This step should disclose any inherent numerical problems
such as nonuniqueness of the numerical solution, inadequate
definition of numerical parameters, incorrect or non-optimal
values used for these parameters, numerical dispersion, nu-
merical instability such as oscillations or divergent solution,

TABLE 11 Overview of Graphical Code Testing Evaluation
Techniques (6)

Type of Variable Type of Graph Optional Graph

Distribution of
dependent variable in
space and time

Line graph versus distance for
selected times, line graph versus
time for selected locations, two-
dimensional contour plot, two-
dimensional histograms

Two- and
three-
dimensional
iso-surfaces

Deviations in
dependent variable in
space and time

Line graph versus distance for
selected times, line graph versus
time for selected locations, two-
dimensional contours (for large
number of nodes), two-dimensional
histograms

Combination graphs Line graph of dependent variable
and deviations versus distance/
time

Global mass balance Line graph versus time
Iteration error Line graph versus number of

iterations for selected times
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and problems regarding conservation of mass.
10.3 Computer Code Inspection—In this inspection, atten-

tion is given to the manner in which modern programming
principles have been applied with respect to code structure,
compliance with programming standards, efficient use of
programming languages, and internal documentation. This step
might reveal undetected programming or logic errors that are
hard to detect in verification runs.

10.4 Evaluation of Code Documentation— The documen-

tation is evaluated through visual inspection, comparison with
existing documentation standards and guidelines, and through
its use as a guide in preparing for and executing code testing
runs and example problems.

10.5 Evaluating Ease of Use—The data files provided by
the model developer are used to evaluate the operation of the
code and the user’s guide through a test-run process. At this
stage, special attention is given to the rules and restrictions
necessary to operate the code (“tricks,” for example, to

TABLE 12 Use of Graphical Evaluation Techniques (6)

Test Problem
Dimensionality

Graph Type

Contours of Spatial
Distribution

Line Graph of Spatial Distribution
Line Graph of Behavior

in Time
1-D Histogram of

Spatial Distribution
2-D Histogram of Spatial

Distribution

1-D ... yes at selected locations yes ...
2-D horizontal areal for selected lines parallel to axes in

middle of model domain and at edges
and for lines under 45° with axes
(separate graphs for each data-pair
set)

at selected locations
(dependent variable)

at same locations as
line graph (deviations;
combine with line
graph for data-pair
set)

for rectangular grids
only

2-D vertical profile for selected lines parallel to axes in
middle of model domain and at edges
and for lines under 45° with axes
(separate graphs for each data pair
set)

at selected locations
(dependent variable)

at same locations as
line graph (deviations;
combine with line
graph for data-pair
set)

for rectangular grids
only

Radial-symmetrical areal for 2 axes and for a line under 45° with
the axes (combination plot of all three
data-pair sets in separate graphs for
variable and deviation)

at selected locations at same locations as
line graph (deviations;
combine in separate
graph for each data-
pair set, with line
graph)

for rectangular grids
only

3-D selected slices and
profiles

for selected lines parallel to the axes
and at a 45° angle with the axes

at selected locations at same locations as
line graph (deviations;
combine with line
graph for each data-
pair set)

for rectangular grids
only; same slices and
profiles as used for
contours

Transient at selected times at selected times for linear, logarithmic,
or user-defined time-
stepping

at selected times at selected times

FIG. 4 Graphic Comparison of Heads versus Distance Computed
by Code and Generated by Benchmark (6)

FIG. 5 Graphic Comparison of Head Residuals versus Distance
(6)
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overcome restrictions in applicability), to the code’s input file
structure, and to the user-interface, if present.

11. Keywords

11.1 benchmarking; computer code; ground water; ground-
water modeling; model testing; quality assurance; verification

FIG. 6 Graphic Comparison of Heads versus Time (at given
location) Computed by Code and Generated by Benchmark (6)

FIG. 7 Graphic Comparison of Head Residuals (at given location)
versus Time (6)
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FIG. 8 Combination Plot of X-Y Graph of Dependent Variable and Column Plot of Residuals (6)

FIG. 9 Quasi-three-dimensional Graphic Representation of Computed Heads (6)
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FIG. 10 Three-dimensional Graphic Representation of Head Deviations (Residuals) Between Code Result and Benchmark (6)

FIG. 11 Qualitative Evaluation of Graphic Comparison (6)

FIG. 12 Representative Sets of Spatially Defined Data Pairs for
Intercomparison: One-dimensional, Uniform Flow Case (6)
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FIG. 13 Representative Sets of Spatially Defined Data Pairs for
Intercomparison: Radial, Confined Flow Case (6)
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